
Efficient Abstraction and Refinement for
Behavioral Description Based Web Service Composition

Hyunyoung Kil Wonhong Nam Dongwon Lee

The Pennsylvania State University
{hykil, wnam, dongwon}@psu.edu

Abstract

The Web Service Composition (WSC) problem with
respect to behavioral descriptions deals with the
automatic synthesis of a coordinator web service,
c, that controls a set of web services to reach a
goal state. Despite its importance, however, solv-
ing the WSC problem for a general case (when c
has only partial observations) remains to be doubly
exponential in the number of variables in web ser-
vice descriptions, rendering any attempts to com-
pute an exact solution for modest size impractical.
Toward this challenge, in this paper, we propose
two novel (signature preserving and subsuming)
approximation-based approaches using abstraction
and refinement. We empirically validate that our
proposals can solve realistic problems efficiently.

1 Introduction

Web services are software systems designed to support ma-
chine to machine interoperation over the Internet. When a
single web service does not satisfy a given requirement en-
tirely, one needs to use a composition of web services. In
particular, the Web Service Composition (WSC) problem that
we focus on is, given a set of (behavioral descriptions of) web
services, W , and a reachability goal, G, to automatically syn-
thesize a coordinator web service, c, that controls W to satisfy
G. In this paper, a behavioral description of a web service is
a formal specification on what the web service executes inter-
nally and externally with interacting with users; e.g., describ-
ing what output value it returns for a given input and its state,
and how it changes its internal state.

Despite abundant researches on the WSC problem, only a
few (e.g., [Traverso and Pistore, 2004; Pistore et al., 2005a;
2005b]) employ realistic models with partial observation.
Our previous work [Kil et al., 2008] investigated the com-
putational complexity (i.e., lower bound) of the WSC prob-
lem: (1) solving the WSC problem for a restricted case (when
the synthesized coordinator web service, c, has full observa-
tion for all variables of the given web services) is EXP-hard,
and (2) solving the WSC problem for a general case (when
c has partial observation) is 2-EXP-hard. These results sug-
gest studying efficient approximation solutions to the WSC
problem. Toward this challenge, in this paper, we propose
two approximation-based algorithms using “abstraction and

refinement” [Clarke et al., 1994]. To the best of our knowl-
edge, it is the first attempt to apply an abstraction technique
to the WSC problem. Even, in planning under partial obser-
vation which has a strong connection with WSC, no study has
attempted to apply abstraction techniques.

The first step is to reduce the original web services to the
abstract ones with less variables. If we identify a coordinator
that controls the abstract web services to satisfy a given goal,
the coordinator can control the original web services to sat-
isfy the goal since the abstract web services over-approximate
the concrete ones. Otherwise, we refine the abstract web ser-
vices by adding variables, and repeat to find a solution. For
abstraction, we propose two methods—signature-preserving
abstraction and signature-subsuming abstraction. We report
on the performance of our tool on 3 sets of realistic problems
(8 instances), comparing with a basic algorithm [Traverso
and Pistore, 2004] without abstraction/refinement. Our ex-
periment shows that our technique outperforms the basic al-
gorithm. Finally, it is worth pointing out that our approach
can be readily adopted for other WSC techniques such as
knowledge-level composition [Pistore et al., 2005b].

2 Web Service Composition & Lower Bounds

Example 1 (Travel agency system). Clients want to reserve
both a flight ticket and a hotel room for a particular desti-
nation and a period. However, there exist only an airline
reservation (AR) web service and a hotel reservation (HR)
web service separately. Clearly, we want to combine these
web services rather than implementing a new one. One way
to combine them is to automatically construct a coordina-
tor web service which communicates with them to book up
both a flight ticket and a hotel room. Figure 1 illustrates
this example. AR service receives a request including de-
parting/returning dates, an origin and a destination, and then
checks if the number of available seats for flights is greater
than 0. If so, it returns the flight information and its price;
otherwise, it returns “Not Available”. Once offering the price,
it waits for “Accept” or “Refuse” from its environment (in this
case, a coordinator to be constructed). According to the an-
swer, it processes the reservation. Likewise, HR service is
requested with check-in/check-out dates and a location, and
then checks the number of available rooms. If there is an
available accommodation, it returns the room information and
its price; otherwise, it returns “Not Available”. AR then pro-

1740

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)

Travel Agency
System

Reserve/Cancel

Accept/Refuse

Offer/NotAvail

In/Out dates
Location

Accept/Refuse

Reserve/Cancel

Offer/NotAvail

AR

HRReserve both
or Cancel

Dates
From/To Cities

Dates
From/To Cities

User

Figure 1: Travel agency system

cesses a reply “Accept” or “Refuse” from its environment. �

Definition 1 (Web service) A (behavioral description of)
web service w is a 5-tuple (X , XI , XO, Init ,T) where:
• X is a finite set of variables that w controls. A state s

of w is a valuation for every variable in X . We denote a
set of all states as S .

• XI is a finite set of input variables that w reads from its
environment; X ∩ XI = ∅, and every variable x ∈ X ∪
XI has a finite domain (e.g., Boolean, bounded integers,
or enumerated types). A state in for inputs is a valuation
for every variable in XI . We denote a set of all input
states as S I .

• XO ⊆ X is a finite set of output variables that its envi-
ronment can read. Let us denote a set of input and output
variables by XIO (i.e., XIO = XI ∪ XO), and a set of
all variables by XA (i.e., XA = X ∪ XI).

• Init(X) is an initial predicate over X . Init(s) = true
if and only if s is an initial state.

• T (X , XI ,X ′) is a transition predicate over X ∪ XI ∪
X ′. For a set X of variables, we denote the set of primed
variables of X as X ′ = {x′ | x ∈ X}, which represents
a set of variables encoding successor states. T (s, in, s ′)
is true if and only if s ′ can be a next state when the
input in ∈ S I is received at the state s . T can define a
non-deterministic transition relation. �

While the formalism for web services by Traverso et
al. [Traverso and Pistore, 2004] is based on an explicit state-
transition system using a set of states, we define symbolically
web services by a set of variables, which is more compact.
Example 2. Consider a simple version of a web service w for
the airline reservation in Example 1, and assume that clients
can request (reserve or refuse) a flight ticket by an action req1
or req2 (accept or refuse, respectively). The web service w
can be represented as (X , XI , XO, Init ,T) where:

• X = {state, avail, reply, confirm, f num, tr num}
where state has the domain {q1 , q2}, avail is boolean,
reply has the domain {undecided , offer , notAvail},
confirm has the domain {undecided , reserve, cancel},
f num (flight number) has the domain {f1 , f2}, and tr num
(transaction number) has the domain {t1 , t2}.

• XI = {action} where action has the domain {req1, req2,
accept , refuse}.

• XO = {reply, confirm, f num}.
• Init(X) ≡ (state = q1) ∧ (reply = undecided)

∧(confirm = undecided).

• T (X , XI ,X ′) ≡
(((state = q1)∧(action = req1)∧(avail = true)) →

((state′ = q2)∧ (reply′ = offer)∧ (tr num′ = t1)))
∧ (((state = q1) ∧ (action = req1)) → (f num′ = f1))
∧ · · ·
∧ (((state = q2) ∧ (action = accept)) →

((state′ = q1) ∧ (confirm′ = reserve)))
∧ (((state = q2) ∧ (action = refuse)) →

((state′ = q1) ∧ (confirm′ = cancel))). �

Note that the process model for any web service described
in semantic web languages (e.g., WS-BPEL or OWL-S) can
be easily transformed into our representation above without
any information loss if it has only finite domain variables and
no recursion. In the WSC problem in this paper, given a set
of available web services, W , every web service in W com-
municates only with their coordinator but not with each other.
Definition 2 (Set of web services) Based on the assumption
above, given a set W = {w1, · · · ,wn} of web services
where each wi is (Xi, X

I
i , XO

i , Init i,Ti), and Xi and XI
i

are disjoint with each other Xj and XI
j , respectively, W

also can be represented by a 5-tuple (X , XI , XO, Init ,T)
where X = X1 ∪ · · · ∪ Xn, XI = XI

1 ∪ · · · ∪ XI
n,

XO = XO
1 ∪ · · · ∪ XO

n , Init(X) = Init1 ∧ · · · ∧ Initn,
and T (X , XI ,X ′) = T1 ∧ · · · ∧ Tn. �

Since a coordinator web service is also a web service, it
is a 5-tuple c(Xc , X

I
c , XO

c , Initc ,Tc). In what follows, sc
denotes a state of a coordinator web service, and Sc denotes
a set of all states of a coordinator. Although Tc can define a
non-deterministic transition relation, in this problem we want
only a deterministic transition relation for c; i.e., for every
coordinator state sc and input in , there exists only one next
coordinator state s ′c such that Tc(sc , in, s ′c) = true.

For a state s over X and a set of variables Y ⊆ X , let s[Y]
denote the valuation over Y obtained by restricting s to Y .
Definition 3 (Execution tree) Given a set W (X , XI , XO,
Init , T) of web services and a coordinator c(Xc , XI

c , XO
c ,

Initc , Tc) where XI = XO
c and XO = XI

c , we can de-
fine an execution tree, denoted by W ||c, which represents
the composition of W and c as follows:

• Each node in W ||c is in S × Sc .
• The root node is (s, sc) such that Init(s) = true and

Initc(sc) = true.
• For each node (s, sc), it has a set of child nodes,
{(s ′, s ′c) | T (s, in, s ′)=true, in=sc [XI], Tc(sc , inc ,
s ′c)=true, inc=s ′[XO]}. �

In the above, intuitively, the web services W , by receiv-
ing the input in from the current state sc of the coordinator,
collectively proceeds from s to the next state s ′, and then the
coordinator, by receiving the input inc from the new state s ′
of the web services, proceeds from sc to the next state s ′c .
Even though the composition of W and c is defined as syn-
chronous communication, we can easily extend this model
for asynchronous communication using τ -transition [Pistore
et al., 2005a]. A goal G ⊆ S is a set of states to reach, and
specified as a predicate. Given a set W of web services, a
coordinator c, and a goal G , we define W ||c |= G if for ev-
ery path (s0, s0

c)(s1, s1
c) · · · in the execution tree W ||c, there

exists i ≥ 0 such that si ∈ G ; namely, every path from the
initial node (s0, s0

c) reaches a goal state eventually.

1741

Definition 4 (Web service composition problem) The web
service composition (WSC) problem that we focus on in this
paper is, given a set W of web services and a goal G , to con-
struct a coordinator web service c such that W ||c |= G . �

Example 3. In Example 1, we wish to reserve both a
flight ticket and a hotel room. This can be represented as
G ≡ (flightConfirm = reserve) ∧ (hotelConfirm =
reserve). Now, given a set W = {wAR,wHR} of web ser-
vices and the goal G above, a WSC problem is to construct a
coordinator web service c such that W ||c |= G . �

To study the computational complexity (i.e., lower bound)
for WSC, we define two WSC problems as follows:

• WSC with full observation: a special case of WSC
problems where W (X , XI , XO, Init ,T) such that
X = XO; i.e., W contains no internal variable.

• WSC with partial observation: a general WSC prob-
lem where there is no restriction for XO. That is, a co-
ordinator can read only the output variables in XO.

Theorem 1. The WSC problem with full observation is ex-
ponential in the number of variables in W .

The proof is to simulate an alternating Turing machine
(ATM) [Papadimitriou, 1994] with a polynomial space bound.
That is, for any ATM A and any input string σ, we can con-
struct a WSC problem in polynomial time such that A accepts
σ if and only if there exists a coordinator to satisfy a goal.
Theorem 2. The WSC problem with partial observation is
doubly-exponential in the number of variables in W .

The proof is to simulate an ATM with exponential space
bound. For the details of both proofs, see [Kil et al., 2008].

3 Basic Algorithm for WSC Problem

In this section, we study a basic algorithm for the gen-
eral WSC problem defined in Section 2. Several re-
searches [Traverso and Pistore, 2004; Pistore et al., 2005a]
have successfully applied a planning technique with partial
observation [Bertoli et al., 2006] to WSC problems. Thus,
we also employ the same method for our baseline algorithm;
Algorithm 1 for the WSC problem is based on the auto-
mated planning algorithm on partial observation [Bertoli et
al., 2006]. In a general case of WSC, a coordinator web ser-
vice is not able to identify the exact state of target web ser-
vices. Hence, we model this uncertainty by using a belief
state, which is a set of possible states of target web services
but indistinguishable. The underlying idea of Algorithm 1 is
to construct an and-or searching tree from initial belief states
to goal belief states. That is, from any node (a belief state)
of the tree, for non-determinism of output values of web ser-
vices, we extend the tree with a set of child nodes via and-
edges. In this case, all the child nodes should reach a goal
belief state. For coordinator’s selecting input values, we con-
struct a set of child nodes via or-edges. In this case, at least
one child is required to reach a goal belief state.

To initialize the and-or searching tree, Algorithm 1 first
constructs a root node (a belief state) corresponding to the
given initial predicate, Init , and assigns “undecided” to the
result value for the root (lines 1–2). If the states correspond-
ing to Init are already included in goal states, we assign
“true” to the result value for the root. Next (lines 5–12), until

Algorithm 1: WSC with partial observation
Input : A set W of web services and a goal G .
Output: A coordinate web service c.

tree := InitializeSearchingTree(Init);1

tree.root .result := undecided ;2

if (States(Init) ⊆ States(G)) then3

tree.root .result := true;4

while (tree.root .result = undecided) do5

node := SelectNode(tree);6

childNodes := ExtendTree(tree,node);7

if (CheckSuccess(childNodes)) then8

node.result := true;9

else if (CheckFailure(childNodes)) then10

node.result := false;11

PropagateResult(tree,node);12

if (tree.root .result = true) then13

return ConstructCoordinator(tree);14

else return null ;15

determining the result value for the root, we repeat: (1) to se-
lect a node which is not determined yet as “true” or “false”,
(2) to extend the tree from the selected node by computing a
set of possible successor nodes, and (3) to check if the node
can reach a goal state based on the and-or constraint. Once
we identify the result of each node, we propagate the result to
its ancestor node. Finally, if the algorithm identifies the result
of root node as true, it constructs a coordinator web service
from the tree, and returns the coordinator. Otherwise, it re-
turns null. The complexity of the algorithm is O(22n

) where
n is the number of variables in W , since the number of states
of W is 2n and thus the number of belief states is 22n

(recall
Theorem 2).

4 Signature-preserving Abstraction and

Refinement

Theorems 1 and 2 imply that the WSC problem is computa-
tionally hard. Hence, more efforts to devise efficient approx-
imation solutions to the WSC problem are needed. In ad-
dition, the complexity of Algorithm 1 also provides the same
implication. Therefore, we propose two approximation-based
methods using abstraction and refinement in Sections 4 and 5.

4.1 Signature-preserving abstraction

Given a set W of web services, we define signature-
preserving abstract web services that have the same signature
(i.e., the same I/O variables) but less variables than W .
Definition 5 (Signature-preserving abstract web services)
Given a set of web services W (X , XI , XO, Init , T) and
a set Y of variables such that XIO ⊆ Y ⊆ XA, the
signature-preserving abstraction of W with respect to Y is
WY (XY , XI

Y , XO
Y , InitY , TY) where:

• XY = Y \ XI , XI
Y = XI , and XO

Y = XO.
• For every sY ∈ SY , InitY (sY) = true iff ∃s ∈

S. (Init(s) = true) ∧ (sY = s[XY]).
• For every sY , s′Y ∈ SY , TY (sY , in, s′Y) = true iff

∃s, s′ ∈ S. (T (s, in, s′) = true) ∧ (sY = s[XY]) ∧
(s′Y = s′[XY]). �

1742

req

req

req

req

order

order

GOALorder

order

state = q2

avail = true
tr num = t1

state = q2

tr num = t1
avail = false

s1

state = q1

avail = true

state = q1

avail = false

s2 s3

state = q2

avail = true
tr num = t2

state = q2

tr num = t2
avail = false

s4 s5 s6

(a) Original states for {state, avail, tr num}
order

GOAL
req

req

order

state = q2

avail = true

state = q2

avail = false

state = q1

state = q1

s7

avail = true

avail = false

s8

s9 s10

(b) Abstract states for {state, avail}
order

GOALorder

req
state = q2

s12s11

state = q1

(c) Abstract states for {state}
Figure 2: Abstraction

Since WY preserves the signature of W , once we con-
struct a coordinator c which can be composed with WY based
on Definition 3, c also can be composed with W . More-
over, since the abstraction WY over-approximates the con-
crete web services W (i.e., WY contains all the behaviors of
W), WY satisfies the following property.

Theorem 3 (Soundness). Given a set W of web services
and a goal G , if a coordinator web service c satisfies W ′||c |=
G where W ′ is a signature-preserving abstraction of W (e.g.,
WY in Definition 5), then c also satisfies W ||c |= G .

Example 4 (Abstraction). Figure 2(a) illustrates the con-
crete state space with 6 states, where there are three inter-
nal variables—state, avail, tr num. Symbols above ar-
rows represent a value of an input variable. In this example,
from the state s1, we have a strategy to guarantee to reach
GOAL—invoking req and order. Figure 2(b) shows an ab-
stract state space with respect to {state, avail}. s1 and s4

in the original space are mapped to s7 and s9, respectively.
Two states, s2 and s3, (s5 and s6) collapse into s8 (s10, re-
spectively). Although the number of states decreases, every
path in the original state space is mapped to one of paths in
the abstract space. Moreover, from the state s7 correspond-
ing to s1, we still have a strategy to guarantee to reach GOAL.
Figure 2(c) shows a coarser abstraction. However, from the
state s11 corresponding to s1, we no longer have a strategy to
guarantee to reach GOAL since we abstract out too much. �

4.2 Abstraction and refinement algorithm

Algorithm 2 presents a high-level description of our method
based on signature-preserving abstraction. In a nutshell, we
abstract a given web services W into W ′ and try to find a
solution for the abstraction W ′. If we identify such a coor-
dinator, it can indeed control the original web services W to

Algorithm 2: Signature-preserving Abs/Ref WSC
Input : A set W of web services and a goal G .
Output: A coordinate web service c.

Y := XI ∪ XO;1

WY := Abstraction(W , Y); // WY has only XI and XO .2

if ((c := WSCFullObs(WY ,G)) �= null) then3

return c;4

ConstructDependencyGraph(W ,G);5

while ((newVars := SelectNewVars(W ,G)) �= null) do6

Y := Y ∪ newVars;7

WY := Abstraction(W , Y);8

if ((c := WSCPartialObs(WY ,G)) �= null) then9

return c;10

return null ;11

intput var

goal var
output var

reply

tr numf num

action avail

state

confirm

Figure 3: Variable dependency graph

satisfy a given goal. Otherwise, we repeat the search with
more accurate abstraction.

First, we abstract W with only input and output variables,
i.e., Y = XI ∪ XO (lines 1–2). Since, at this point, WY

does not include any internal variable (i.e., XY = XO
Y), we

can exploit, in this case, the algorithm for WSC with full
observation, WSCFullObs, which is more efficient algorithm
(EXP-hard). For the sake of space, we do not show the de-
tails of WSCFullObs. If we find a coordinator c such that
WY ||c |= G , then c also satisfies W ||c |= G by Theorem 3.
Otherwise, we refine our current abstraction WY by adding
more variables, and try to find c for the new abstraction (lines
6–10). How to select additional variables will be elaborated
in Section 4.3. We repeat the abstration/refinement step un-
til we identify a coordinator c satisfying WY ||c |= G or the
variable set used for abstraction equals to the original variable
set. The latter case implies that no solution exists for the given
problem. Although from the second loop, we should employ
the algorithm for WSC with partial observation, WSCPar-
tialObs, with O(22n

) complexity, once we identify a coor-
dinator using small abstract web services, searching space is
shrunken (double-)exponentially in the number of variables
that we save.

4.3 Automatic refinement

If we fail to identify a coordinator for abstract web services
(line 3 or 9 in Algorithm 2), it is caused either by too coarse
abstraction or by the fact that a coordinator for the original
web services does not exist. For the latter case, since we
check it with the original web services in the worst case, Al-
gorithm 2 will correctly conclude that there is no solution.

Theorem 4 (Completeness). Given a set of web services W
and a goal G , if there does not exist a coordinator c to satisfy
W ||c |= G , Algorithm 2 eventually returns null .

1743

However, in the former case, although there exists a coordi-
nator for the original web services W , WSCFullObs or WSC-
PartialObs returns null for the abstraction WY . The reason
is that removing too many variables, including ones with sig-
nificant information to reach a goal, gives too much freedom
to the abstraction. It induces some infeasible paths to states
not satisfying the goal. For instance, in Figure 2(c), since we
remove the variable avail, s1 (s2 and s3) is indistinguish-
able from s4 (s5 and s6, respectively). Thus, an infeasible
edge from s12 to s11 by order is introduced, by which we no
longer have a strategy to guarantee to reach a goal. Therefore,
we have to refine the current abstraction to find a solution by
adding more variables. Since the infeasible paths to states not
satisfying the goal prevent us from identifying a solution co-
ordinator, it is important to accurately keep track of the values
of variables appearing in the given goal predicate. With this
reason, the most significant criterion for selecting variables
to be added is the relevance to variables in the goal predicate.
To evaluate each variable’s relevance to the goal variables, we
construct a variable dependency graph.
Definition 6 (Variable dependency graph) Given a set of
web services W and a goal G , a variable dependency graph
is a directed graph G(V,E) where a set V of vertexes is {x |
x ∈ X ∪ XI} and a set E of directed edges is {(x � y) |
x, y ∈ V, the value of y depends on the value of x}. �

For instance, the pseudo-codes “y := x” and “if (x =
true) then y :=0” imply that the value of y depends on
x. Figure 3 illustrates a fraction of the variable dependency
graph for W and G in Example 3. It shows only variables
of wAR. For example, since the values of state, reply and
tr num depend on the values of state, action and avail
(see the first part of T in Example 2), we have corresponding
directed edges (state�state), (action�state), (avail�
state), · · · , and (action � tr num) in Figure 3. In the de-
pendency graph, it is clear that variables with stronger depen-
dency to the variables in the goal predicate locate closer to
the goal variables. Thus, in each iteration of Algorithm 2, the
procedure SelectNewVars returns a set of variables that have
the closest hop to the variables in the goal predicate (i.e., 1-
hop, 2-hop, and so on). For instance, since confirm is a
variable in the goal predicate, the set of variables that have
1-hop dependency is {action, avail, state}.

5 Signature-subsuming Abstraction

In Section 4, we restricted the target of abstraction to inter-
nal variables; namely, abstract web services have the same
I/O variables with original ones. However, in many cases,
we have observed that some of output variables do not pro-
vide any important information for a coordinator to decide its
move. For instance, the airline reservation web service in Ex-
ample 2 simply copies the request value (i.e., req1 and req2)
to the flight number (i.e., f1 and f2), and returns it to clients
for reference. In this case, even without this output, the coor-
dinator can successfully control given web services to satisfy
the goal. Hence, in this section, we consider, as the target of
abstraction, output variables as well as internal variables.

First, we define signature-subsuming abstract web services
for given web services, which have the same input variables,

but less internal variables and output variables.

Definition 7 (Signature-subsuming abstract web services)
Given a set of web services W (X , XI , XO, Init , T), and a
set Y of variables such that XI ⊆ Y ⊆ XA, the signature-
subsuming abstraction of W with respect to Y is WY (XY ,
XI

Y , XO
Y , InitY , TY) where XY = Y \ XI , XI

Y = XI ,
XO

Y = Y ∩ XO, and InitY and TY are defined as the same
as Definition 5. �

Since signature-subsuming abstract web services WY have
less output variables than the original web services W , any
coordinator c which can be composed with WY is also able to
be composed with W by ignoring redundant output variables
of W (i.e., ignoring XO\XO

Y). Moreover, since WY contains
all the behaviors of W , Theorem 3 is still valid.

For selecting output variables to be used in abstraction, we
again employ the variable dependency graph in Section 4.3.
In general, output variables that depend on internal variables
that in turn depend on variables in a goal predicate, tend to
provide important information on the state of web services
for the coordinator to control the web services. For instance,
in Figure 3, reply has a dependency on state and avail
that have a dependency on the goal variable confirm, and
reply is an important output by which a coordinator infer
whether a flight seat is available. On the other hand, f num
that represents a flight number has dependency only on an
input variable, action, and it does not provide any infor-
mation to help a coordinator. Therefore, we find such a set
X SO ⊆ XO of significant output variables which have a
dependency on internal variables with a dependency on vari-
ables in a goal predicate, and then use XSO for the initial
abstraction. That is, in signature-subsuming abstraction, we
start Y := XI ∪ X SO as line 1 in Algorithm 2. The rest of
output variables (i.e., XO\XSO) are used in the last iteration.

6 Empirical Validation

We have implemented automatic tools for signature-
preserving/signature-subsuming abstraction and refinement,
using a state-of-the-art planning tool, MBP [Bertoli et al.,
2006]. Given a set of web service descriptions in WS-BPEL
files, and a goal predicate, our tools automatically construct
a coordinator web service which can control the given web
services to achieve the goal. To demonstrate that our tools ef-
ficiently synthesize coordinators, we compared the basic al-
gorithm [Traverso and Pistore, 2004] and our methods with
3 sets of realistic examples (8 instances); Travel agency sys-
tem (TAS), Producer and shipper (P&S), and Virtual online
shop (VOS). Since there are no public benchmark test sets,
we have selected web service examples popularly used in web
service composition researches. TAS was explained in Ex-
ample 1. We have three instances, TAS-a, TAS-b, and TAS-
c, where we have 4, 9, and 16 options, respectively, for in-
put values for flight reservation and hotel reservation each.
Producer and shipper (P&S) [Traverso and Pistore, 2004;
Pistore et al., 2005a] includes two web services, Producer
and Shipper. Producer produces furniture items, and Ship-
per delivers an item from an origin to a destination. We have
three instances, P&S-a, P&S-b, and P&S-c where there are
4, 6, and 8 options, respectively, for furniture order and de-

1744

Table 1: Experiment result
Problem Total var I/O var Basic Signature-preserving Saved var Signature-subsuming Saved var
TAS-a 38 9 5.8 2.9 6 0.1 6/4
TAS-b 42 8 61.4 55.3 2 13.8 2/1
TAS-c 69 10 >7200.0 >7200.0 6 162.0 6/2
P&S-a 44 9 50.4 49.8 11 3.2 11/2
P&S-b 55 10 320.0 364.6 19 42.3 19/3
P&S-c 63 10 >7200.0 >7200.0 20 1214.0 20/3
VOS-a 61 15 208.3 195.7 14 18.2 14/4
VOS-b 74 15 3323.0 2321.3 23 520.8 23/4

livery order each. Virtual online shop (VOS) [Barbon et al.,
2006] includes Store and Bank web services where Store sells
items and Bank transfers money from one account to another
account. This example includes two instances, VOS-a and
VOS-b where there are 3 and 4 options, respectively, for item
orders and money transfer each.

All experiments have been performed on a PC using a
2.4GHz Pentium processor, 2GB memory and a Linux op-
erating system. Table 1 presents the number of total variables
(Total var) and input/output variables (I/O var) in boolean.
It also shows the total execution time in seconds for the ba-
sic algorithm (Basic) and our methods (Signature-preserving
and Signature-subsuming), and the number of boolean vari-
ables that we saved (Saved var). In the signature-subsuming
case, the table presents the number of internal variables/IO
variables which we saved. Our experiment shows that our
technique outperforms the basic algorithm in terms of execu-
tion time. The numbers of iterations in our experiments were
around 2–3, since variable dependency graphs were relatively
shallow. In WSC literature, in general, behavior descriptions
in WS-BPEL or OWL-S tend not to be complex, which usu-
ally yields to shallow variable dependency graphs.

Although we have employed modest size of examples, our
abstraction technique can be useful even for larger size exam-
ples since in general, the number of variables which have rel-
evance with goal variables is limited. For instance, with 100
web services with 10 variables each (total 1,000 variables), a
goal that users want is often associated with only a fraction of
available web services and variables (say 5%, 50 variables).
In such a case, our techniques can eliminate 95% of irrelevant
variables, improving the convergence speed considerably.

7 Related Work and Conclusion

In web service compositions, many researches [Traverso and
Pistore, 2004; Pistore et al., 2005a; 2005b; Nam et al., 2008]
have been carried out, but only a few ones employ realis-
tic models with partial observability. [Traverso and Pistore,
2004; Pistore et al., 2005a; 2005b] have defined web service
compositions with partial observability, and presented algo-
rithms and tools using their automated planning techniques.
However, to the best of our knowledge, there is no study for
WSC problems or planning on partial observation using ab-
straction and refinement.

The WSC problem has a strong connection with automated
planning under partial observation. In [Bertoli et al., 2006],
a fully automatic planning tool MBP has been developed for
this setting based on belief-states. On the other hand, several
researches have been performed in planning using abstrac-

tion. Huang et al. [Huang et al., 2007] propose an algorithm
to reduce observation variables for strong plans. This tech-
nique, however, cannot identify such a variable until a plan
is constructed. Thus, it cannot be applied to our problem.
Armano et al. [Armano et al., 2003] employ abstraction tech-
niques for a hierarchical planner. Smith et al. [Smith et al.,
2007] present an abstraction technique to generate exponen-
tially smaller POMDP.

In this paper, we proposed approximation based techniques
for WSC problems based on abstraction and refinement. Our
preliminary experiment showed promising results. Several
directions are ahead for future work. First, we plan to study
other abstraction methods and refinement techniques to early
converge the conclusion. Second, we will extend our tech-
nique for the WSC problem with more expressive goals (e.g.,
goals specified in temporal logics). Third, we want to study a
tight bound for variables required to solve this problem.

References
[Armano et al., 2003] G. Armano, G. Cherchi, and E. Vargiu. A

parametric hierarchical planner for experimenting abstraction
techniques. In IJCAI, pages 936–941, 2003.

[Barbon et al., 2006] F. Barbon, P. Traverso, M. Pistore, and M.
Trainotti. Run-time monitoring of instances and classes of web
service compositions. In ICWS, pages 63–71, 2006.

[Bertoli et al., 2006] P. Bertoli, A. Cimatti, M. Roveri, and P.
Traverso. Strong planning under partial observability. Artificial
Intelligence, 170(4):337–384, 2006.

[Clarke et al., 1994] E. M. Clarke, O. Grumberg, and D. E. Long.
Model Checking and Abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16(5):1512–1542, 1994.

[Huang et al., 2007] W. Huang, Z. Wen, Y. Jiang, and L. Wu. Ob-
servation reduction for strong plans. In IJCAI, pages 1930–1935,
2007.

[Kil et al., 2008] H. Kil, W. Nam, and D. Lee. Computational com-
plexity of web service composition based on behavioral descrip-
tions. In ICTAI, pages 359–363, 2008.

[Nam et al., 2008] W. Nam, H. Kil, and D. Lee. Type-aware
web service composition using boolean satisfiability solver. In
CEC/EEE, pages 331–334, 2008.

[Papadimitriou, 1994] C. M. Papadimitriou. Computational com-
plexity. Addison-Wesley, 1994.

[Pistore et al., 2005a] M. Pistore, P. Traverso, and P. Bertoli. Auto-
mated composition of web services by planning in asynchronous
domains. In ICAPS, pages 2–11, 2005.

[Pistore et al., 2005b] M. Pistore, A. Marconi, P. Bertoli, and
P. Traverso. Automated composition of web services by plan-
ning at the knowledge level. In IJCAI, pages 1252–1259, 2005.

[Smith et al., 2007] T. Smith, D. R. Thompson, and D. Wettergreen.
Generating exponentially smaller POMDP models using condi-
tionally irrelevant variable abstraction. In ICAPS, pages 304–
311, 2007.

[Traverso and Pistore, 2004] P. Traverso and M. Pistore. Auto-
mated composition of semantic web services into executable pro-
cesses. In ISWC, pages 380–394, 2004.

1745

